EVALUATION OF IN-VITRO ANTI-PROLIFERATIVE ACTIVITY AND IN-VIVO IMMUNOMODULATORY ACTIVITY OF BETA VULGARIS

GITANJALI TRIPATHY*, DEBASISH PRADHAN

1University Department Of Pharmaceutical Sciences, Utkal University, Vanivihar, Bhubaneswar-751004, Odisha, India,
Email: tripathy.gitanjali@gmail.com

Received:25 November 2012, Revised and Accepted:1 January 2013

INTRODUCTION

Beta vulgaris, also known as red beet (Family: Chenopodiceae), is a small sized plant, cultivated in many parts of India. It is popularly known as 'chukandar' or 'beet root', is an erect annual herb with tuberous root stocks. It is native to Mediterranean region and widely cultivated in America, Europe and throughout India. The leaves of Beta vulgaris possess diuretic, purgative and anti-inflammatory activity, seeds known to possess expectorant and carminative properties, roots possess sedative and emenagogue effects. It is also used as a natural food colour in dairy and meat products. The presence of phytochemicals such as betalains i.e., betacyanins (red-violet pigments) and betaxanthines (yellow pigments), flavonoids, polyphenols, vitamins and minerals has been shown in roots. Different beet root compounds, e.g., betalains, became especially important for pharmaceutic/medical betalains (betacyanins and betaxanthins) have been detected only in red-violet-, orange- and yellow-pigmented botanical species belonging to closely related families of the order Caryophyllales. Betalain pigments have specifically been shown to possess various antioxidant functions. The betalalaine group contains about 50 red pigments and 20 yellow pigments. Betanine accounts for 75-90 % of total betacyanin content and betaxanthin comprises vulgaxantin I and vulgaxantin II.

Breast cancer is one of the main life-threatening diseases that a woman may have to face during her lifetime. The increasing incidence of breast neoplasia reported over the last a few decades has led to development of new anticancer drugs, drug combinations, and chemotherapy strategies by methodical and scientific exploration of enormous pool of synthetic, biological, and natural products. In light of the continuing need for effective anticancer agents, and the association of fruit and vegetable consumption with reduced cancer risk, edible plants are increasingly being considered as sources of anticancer drugs; there is a large amount of scientific evidence showing that fruits and vegetables lower the risk of cancer, and medicinal plants constitute the main source of new pharmaceuticals and healthcare products, including medications for ethnoveterinary medicine. Recently, cancer chemoprevention with strategies using foods and medicinal herbs has been regarded as one of the most visible fields for cancer control. However, whether fruit, vegetable, and antioxidant micronutrient consumption is associated with a reduction in breast cancer incidence remains unresolved. Most of the anti-tumor drugs currently used in chemotherapy are toxic to normal cells and cause toxicity for immune cells. Therefore, the identification of new anti-cancer drug with low side effects on immune system or which boosts it has become an essential goal in many studies of immunopharmacology. In the present study, we investigated the in vitro anti-cancer effect and in vivo immunomodulatory activities of methanolic beta vulgaris extract.

MATERIAL AND METHODS

Collection of plant material and preparation of extract

The fresh roots of Beta vulgaris were collected from the outskirts of the city, Bhubaneswar and authenticated by the taxonomist, Dr. P.K.Sahoo, Professor, Department of Botany, Utkal University. Initially these roots were washed with fresh water to remove adhering dirt and foreign particles. Excess of water was shaken off and dried at 35 - 40 °C in an oven for 24 hours. The dried roots were crushed, ground and weighed. It was stored in an air-tight, hard polyethylene container with silica pouch up to 10-12 days. One kg of powdered plant (40 mesh size) was extracted by cold percolation using methanol. The residue was put in a dessicator for further use.

Animals

Swiss albino mice (6 to 8 weeks old) were purchased from Jena Broiler Rabbit Farm (Cuttack, Odisha). They were housed in microlon boxes in a controlled environment (temperature 25±2 °C and 12 hr dark/light cycle) with standard laboratory diet and water ad libitum. The animals were acclimatized to the laboratory conditions for a week prior to the experimentation and randomly divided into six groups of each six animals. Principles of animal handling were strictly adhered to the guidelines and handling of animals was made under the supervision of animal ethics committee of the institute. The experimental protocol was approved by Institutional Animal Ethical Committee (IAEC) of CPCEA (Committee for the Purpose of Control and Supervision of Experiments on Animals).

IAEC Reference Number-(990/UDPS/2005)

Cell line and Culture

Human breast cancer MCF-7 cell line was obtained from Sigma-Aldrich, Bangalore. The cells were maintained in RPMI-1640 supplemented with 10% FBS, penicillin (100 U/ml) and streptomycin (100 μg/ml) in a humidified atmosphere of 50 μg/ml CO2 at 37 °C.

Estimation of In-vitro Anti-proliferative activity

Trypan Blue Exclusion Assay

Trypan Blue is a blue acid dye that has two azo chromophores group. Trypan blue will not enter into the cell wall of plant cells grown in vitro. Trypan blue is a blue acid dye that has two azo chromophores group. Trypan blue will not enter into the cell wall of plant cells grown in vitro.
culture. Trypan Blue is an essential dye, use in estimating the number of viable cells present in a population.

The Methanolic extract was studied for short term in-vitro cytotoxicity using MCF-7 cell line. 10mg of the extract was taken in an Eppendorf vial of capacity 1ml and dilute to six different concentrations with its duplicate and control (50%) using DMSO as a solvent and mixed with the help of a vortexing machine. The cell viability was checked by trypan blue dye (1%) \cite{16-20}. The cell suspension (1x10^5 cells in 0.1ml) was added to tubes containing various concentrations of the test compounds and standard. The volume was made up to 1ml using phosphate buffered saline (PBS). The Control tube contained only cell suspension. These assay mixtures were incubated for 3 hour at 37°C. After incubation 0.1 ml trypan blue was added and number of dead cells determined by using haemocytometer. The percent viability was calculated by using formula:

\[
\text{% Viability} = \frac{(\text{Live cell count}/\text{Total cell count}) \times 100}
\]

Micro culture tetrazolium (MTT) assay

Cell viability was assessed by MTT assay (Micro culture tetrazolium/ formazan assay) in the presence and absence of different concentrations of the plants extract. The assay detects the reduction of MTT by mitochondrial dehydrogenase to blue formazan product, which reflects the normal function of mitochondria and cell viability \cite{16-20}. The cells were seeded in 96-well plates. Four wells for each concentration were seeded and triplicate plates were used in the cell line. Then, the cells were incubated at 37°C. After 24 h the medium was replaced by fresh medium containing different concentrations of the plants extract and standard drug Levamisole. The control groups received DMSO. Then, the medium was changed by fresh medium containing MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 4-diphenyltetrazolium bromide) with a final concentration of 0.5 mg/ml (after 24 h). The cells were incubated for another 4 h in a humidified atmosphere at 37°C and after that the medium containing MTT was removed and remaining MTT formazan crystals were dissolved in DMSO. The absorbance was measured at 570 nm immediately using an ELISA reader. IC_{50} was defined as the concentration of the extract that produced a 50% decrease in cell viability relative to the negative control which was wells exposed to the solvent without any extract \cite{16-20}.

Estimation of In-vivo Immunomodulatory activity

Humoral antibody synthesis

Animals (Five groups of six mice each) were immunized intraperitoneally (i.p.) with 5x10^8 SRBC on days 0 and +7. In three groups, different doses of extract (1, 50 and 100 mg/kg of Beta vulgaris extract) administrated on days -2, -1, 1 and 2 immunization. The mice in the fourth group were injected with Levamisol as positive control on the same day (2 mg/kg, i.p.). The fifth group was considered as non-treated control and injected only with equal amount of the vehicle. Blood samples were obtained from each mouse on day +7 for evaluating primary response and on day +14 for secondary response. Antibody titer was determined by hemagglutination test \cite{21,25}. 25 µl of 0.1% SRBC suspension was added to 25 µl of two-fold diluted serum samples in V-shape micro-titration plates. After 1 h of incubation, the last dilution of serum samples which caused hemagglutination was considered as antibody titer. To compare the results the mean Log2 of the titers was then calculated.

Delayed type hypersensitivity response

Sheep red blood cell (SRBC) was used as antigen for delayed type hypersensitivity reaction. SRBC collected in Alsever's solution, were washed three times in large volumes of pyrogen free 0.9% normal saline and standardized to 5x10^8 cells/ml for injection. Mice were divided into four groups, each group containing five mice. Different concentrations of the Beta vulgaris extract immunized intraperitoneally in three groups at days -2, -1, 0, 1 and 2. The vehicle was injected at the same days in group four as the control. Mice were immunized subcutaneously by injecting (10^6 SRBC/100 µl) on day 0. The mice were then challenged by injection of SRBC suspension in right hind foot pad at day 7. The thickness of the right hind foot pad was measured using vernier caliper after 24 h \cite{21}.

STATISTICAL ANALYSIS

The results are presented as the means ± SD of at least three separate experiments. Statistical analyses were performed by oneway analysis of variance (ANOVA) followed by Tukey Kramer multiple comparison test to express the difference among the groups. All analyses were performed using SPSS software \cite{16}. P values < 0.001 were considered as highly significant and <0.05 were considered significant.

RESULTS

Beta vulgaris inhibited tumor cell growth.

Percentage cell viability of cell lines was carried out by using Trypan blue dye Exclusion technique (Table 1). The Beta vulgaris extract exhibited growth inhibitory effect on MCF-7 cell line under experimental conditions in 72 h treatment. In vitro exposures of MCF-7 cells with various concentrations of Beta vulgaris extract (62.5, 125, 250, 500, 1000 Mcg/ml) significantly suppressed MCF-7 cancer cell growth in a dose-dependent manner (P<0.001). The maximum inhibition of MCF-7 cells due to exposure to Beta vulgaris was found at 1000 Mcg/ml of the extract (99.69% inhibition, Table-1, Figure 1). The results show dose dependent response against MCF-7. The cytotoxic activity may be due to the presence of flavonoids and betains present in the roots of Beta vulgaris.

![Figure 1: Percentage growth inhibition of methanolic extract of Beta vulgaris against MCF-7 cell line.](image_url)

Table 1: Determination of Cytotoxicity

<table>
<thead>
<tr>
<th>Plant extract</th>
<th>Conc (mcg/ml)</th>
<th>Absorbance</th>
<th>% inhibition</th>
<th>IC_{50} (mcg/ml)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta vulgaris</td>
<td>62.5</td>
<td>0.477</td>
<td>15.25</td>
<td>272.9</td>
<td>0.9628</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>0.392</td>
<td>24.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>0.289</td>
<td>44.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0.182</td>
<td>67.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>0.00121</td>
<td>99.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td>0.00021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>0.528</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tripathy et al.

128
Effect of Beta vulgaris on antibody response

The effect of the Beta vulgaris extract on specific antibody synthesis is shown in Figure 2. The mean antibody titer for 50 mg/kg of the extract was 9.6±0.4 versus 81.1±0.4 in non-treated mice at primary response and 10.8 ± 0.8 versus 84 ± 0.5 at secondary response (p<0.001). Moreover, the mean antibody titer for 100 mg/kg of the extract was 10.3±0.5 versus 81.1±0.4 in non-treated mice at primary response and 11.7 ± 0.6 versus 84 ± 0.5 at secondary response (p<0.001). The immunomodulatory effect of the extract on specific antibody production at these concentrations was comparable to the effect of Levamisol (2 mg/kg) as a positive control at both primary (10.9±0.4) and secondary (11.6±0.4) response.

Effect of Beta vulgaris on delayed type hypersensitivity response

Mice immunized with SRBC as antigen for delayed hypersensitivity reaction. The mean footpad thickness of all mice groups treated with 1, 50 and 100 mg/kg of the Beta vulgaris extract at 24 h after immunization of extract-treated mice with SRBC was measured. The mean footpad thickness of the mice groups treated with Beta vulgaris extract had not significantly any change compared to non-treated mice.

DISCUSSION

In the present study, the immunomodulatory effects of Beta vulgaris extract on immune response and tumor cell growth inhibition were investigated. Beta vulgaris is a traditional herb in India and has been used to treat as antioxidant, in diabetes, hypertensives etc. Beet roots have also been reported to be rich in antioxidant compounds. Its juice has been found to counteract the xenobioto-oxidative stress in rats by rejuvenating the activity of the majority of antioxidant enzymes in liver. The active constituents present in Beet root, like betacarotenes and betaxanthines are free radical scavengers and enzymes in liver induced and free radical-mediated oxidation of biological molecules. The high content of folic acid amounting to 15.8 mg/g dry matter is another nutritional feature of the beets which may account for its anti-proliferative and immunomodulatory activity. In this study, the methanolic extract of Beta vulgaris was studied for its probable anti-proliferative activity against MCF-7 cell line which is a kind of human breast cancer cell line and immunomodulatory effects in vivo. According to our results which were seen in vivo, Beta vulgaris extract has potential immunomodulatory effect for specific humoral response to SRBC. This extract had not significant effect on delayed hypersensitivity reaction in mice. Finding of the present study showed stimulatory effect of Beta vulgaris on humoral immunity in mice. However, no anti-cancer effect of this species has ever been reported. In the past few years, a number of Indian herbal medicines with potent anti-proliferative activity were reported, such as Dionysia termeana, Linum persicum and Euphorbia cheiradenia. Beta vulgaris is a promising anti-tumor herb whose mechanism of action is mostly unclear. Inhibition of proliferation has been a continuous effort in tumor treatment. Suppression in cell growth and induction of cell death are two major means to inhibit cancer growth.

In this study, we showed that methanolic extract of Beta vulgaris could cause significant growth inhibition of MCF-7 cell line in a dose-dependent manner. The methanolic extract of Beta vulgaris inhibited tumor cell growth in vitro and showed immunomodulatory effects in vivo. In conclusion, the enhancement of antibody synthesis and MCF-7 growth inhibition indicated that extract contains bioactive components that stimulate immune response and have anti-tumor effect. However, further studies are needed for their elucidation.

ACKNOWLEDGEMENT

The authors are thankful to the Head of the Department, University Department of Pharmaceutical Sciences, Utkal University, Vanivihar, Bhubaneswar, India for providing the laboratory facilities for carrying out this work. The authors are also thankful to INSPIRE-DST for providing the financial support for the research work.

REFERENCES